A Primal-Dual Method for Optimal Control and Trajectory Generation in High-Dimensional Systems
نویسندگان
چکیده
Presented is a method for efficient computation of the Hamilton–Jacobi (HJ) equation for time-optimal control problems using the generalized Hopf formula. Typically, numerical methods to solve the HJ equation rely on a discrete grid of the solution space and exhibit exponential scaling with dimension. The generalized Hopf formula avoids the use of grids and numerical gradients by formulating an unconstrained convex optimization problem. The solution at each point is completely independent, and allows a massively parallel implementation if solutions at multiple points are desired. This work presents a primal-dual method for efficient numeric solution and presents how the resulting optimal trajectory can be generated directly from the solution of the Hopf formula, without further optimization. Examples presented have execution times on the order of milliseconds and experiments show computation scales approximately polynomial in dimension with very small highorder coefficients.
منابع مشابه
Optimal Trajectory Generation for Energy Consumption Minimization and Moving Obstacle Avoidance of SURENA III Robot’s Arm
In this paper, trajectory generation for the 4 DOF arm of SURENA III humanoid robot with the purpose of optimizing energy and avoiding a moving obstacle is presented. For this purpose, first, kinematic equations for a seven DOF manipulator are derived. Then, using the Lagrange method, an explicit dynamics model for the arm is developed. In the next step, in order to generate the desired traject...
متن کاملDouble smoothing technique for infinite-dimensional optimization problems with applications to optimal control
In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual problem, which can be solved by efficient gradient methods. We show th...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملA Double Smoothing Technique for Constrained Convex Optimization Problems and Applications to Optimal Control
In this paper, we propose an efficient approach for solving a class of convex optimization problems in Hilbert spaces. Our feasible region is a (possibly infinite-dimensional) simple convex set, i.e. we assume that projections on this set are computationally easy to compute. The problem we consider is the minimization of a convex function over this region under the additional constraint Au ∈ T ...
متن کاملSome new results on semi fully fuzzy linear programming problems
There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.08226 شماره
صفحات -
تاریخ انتشار 2017